PRÀCTIQUES D'ECONOMETRIA DE L'EMPRESA AMB EL PROGRAMA MICROECONOMETRÍA

Jordi Arcarons Bullich Samuel Calonge Ramírez

Departament d'Econometria, Estadística i Economia Aplicada

PRÀCTIQUES D'ECONOMETRIA DE L'EMPRESA AMB EL PROGRAMA MICROECONOMETRÍA

Jordi Arcarons Bullich Samuel Calonge Ramírez

Departament d'Econometria, Estadística i Economia Aplicada

Edicions

421

Índex

Pràctica 1	7
Solució de la pràctica 1	8
Pràctica 2	17
Solució de la pràctica 2	19
Pràctica 3	25
Solució de la pràctica 3	26
Pràctica 4	31
Solució de la pràctica 4	32
Pràctica 5	39
Solució de la pràctica 5	40
Pràctica 6	47
Solució de la pràctica 6	49
Pràctica 7	57
Solució de la pràctica 7	58
Pràctica 8	65
Solució de la pràctica 8	67
Pràctica 9	77
Solució de la pràctica 9	78
Pràctica 10	85
Solució de la pràctica 10	87
Bases de dades	91
Programa MicroEconometría-Regresión	93
Bibliografia	107
Webgrafia	107

PRÀCTICA 1

Aquesta pràctica pretén il·lustrar algunes de les possibilitats del programa Excel per al càlcul amb sumatoris i matrius, molt útils per estudiar el model de regressió.

Una part important del contingut d'aquesta pràctica és l'explicació de les principals funcions de sumatoris, matrius, probabilitat i distribucions del programa Excel. L'objectiu és doble:

- a) Familiaritzar-se amb aquestes funcions i tenir destresa a l'hora d'emprar-les.
- b) Utilitzar-les per introduir l'aparell matemàtic que requereix el model de regressió.

La pràctica s'ha de realitzar utilitzant el document *Pràctica-1.xlsx* i tenint en compte les consideracions següents:

- Se suposa que es té un mínim coneixement de què és un full de càlcul.
- Les cel·les _____ contenen fórmules d'Excel que es poden consultar seleccionant la cel·la i visualitzant el que apareix a la barra de fórmules; aquestes cel·les estan protegides i no es poden modificar.
- Per a cada cel·la (protegida) hi ha una cel·la (desprotegida), que sí que es pot modificar; aquestes cel·les són l'objectiu de la pràctica, ja que cal escriure-hi la fórmula que permeti obtenir el mateix resultat que es veu a les cel·les .

El llibre d'Excel Pràctica-1.xlsx conté cinc fulls de càlcul diferents:

- 1. *Fórmules de sumatoris*. Descripció i diversos exemples de com s'han d'aplicar aquestes fórmules; es fa una distinció entre els conceptes de sumes no corregides i sumes corregides (o en desviacions) que és important per a desenvolupaments formals posteriors que s'utilitzen habitualment en l'àlgebra del model de regressió.
- 2. *Fórmules de matrius*. Descripció i diversos exemples de com s'han d'aplicar aquestes fórmules més especials; l'objectiu és familiaritzar-se amb l'àlgebra bàsica de matrius, per poder aplicar-la a la resolució del model de regressió.
- 3. *Regressió simple (sumatoris)*. Exemple amb dades reals de com es resol el model de regressió simple, amb tots els detalls que requereix aquest model; per tant, és un contingut bàsic i indispensable per començar a entendre els conceptes del model de regressió. L'objectiu és que els conceptes més teòrics, abstractes i de més difícil comprensió es puguin assumir de manera pràctica i aplicada.
- Regressió simple (matrius). Manera alternativa de resoldre el model de regressió del punt
 3, ja que permet veure l'equivalència de resultats entre les fórmules de sumatoris i les de matrius.
- 5. *Regressió múltiple (matrius)*. Exemple en què es resol un model de regressió amb dues variables exògenes. És un model de regressió múltiple i els càlculs ja es fan únicament amb matrius; introdueix els conceptes clau per interpretar els resultats del model de regressió múltiple.

SOLUCIÓ DE LA PRÀCTICA 1

Ompliu les cel·les _____, que són l'objectiu de la pràctica. Les cel·les _____ contenen fórmules Excel que podeu consultar seleccionant-les.

FÓRMULES DE SUMATORIS							
	$\sum_{i=1}^{N} y_i =$ SUMA(rang)	\rightarrow	Suma els elements de 'rang'				
$\sum_{i=1}^{N} (y_i$	$\sum_{i=1}^{N^{2}} y_{i}^{2} = \text{SUMA.CUADRADOS}(rang)$	\rightarrow	Suma de quadrats dels elements de 'rang' (suma de quadrats no corregida)				
	$-\bar{y})^2 = $ DESVIA2(<i>rang</i>)	\rightarrow	Suma de quadrats en desviacions dels elements de 'rang' (suma de quadrats corregida)				
2	$\sum_{i=1}^{N} x_i y_i = \text{SUMAPRODUCTO}(rang1;rang2)$	\rightarrow	Suma creuada dels elements de 'rang1' amb 'rang2'				
$\overline{y} = PROMEDIO(rang)$ \rightarrow Mitjana dels elements de 'rang'							
FÓRMULES DE VALORS DE DISTRIBUCIONS I PROBABILITATS							
					EXEMPLES		
TAULES -	INV.NORM.ESTAND(probabilitat)		\rightarrow	Valor normal tipificada	$p(z \le z^*) = 0.95; z^* = 1$,64	
	INV.T.2C(probabilitat;graus llibertat)		\rightarrow	Valor t-Student (2 cues)	$p(t_{24} \ge t_{24}^*) = 0,05; t_{24}^* = 2,$,06	
	INV.CHICUAD.CD(probabiltat;graus llibert	at)	\rightarrow	Valor xi-quadrat (cua dreta)	$p(\chi_2 \ge \chi_2^*) = 0.05; \ \chi_2^* = 5.$,99	
	INV.F.CD(probabilitat;gl num.; gl den.)		\rightarrow	Valor F-Snedecor (cua dreta)	$p(F_{1,24} \ge F_{1,24}^*) = 0,05; F_{1,24}^* = 4$,26	
p-valor –	DISTR.NORM.ESTAND(valor)		\rightarrow	Probabilitat normal tipificada	$p(z \le 1,64) = 0$,95	
	DISTR.T.2C(valor;graus llibertat)		\rightarrow	Probabilitat t-Student (2 cues)	$p(t_{24} \ge 2,06) = 0,$,05	
	DISTR.CHICUAD.CD(valor;graus llibertat)		\rightarrow	Probabilitat xi-quadrat (cua dreta	$p(\chi_2 \ge 5,99) = 0,$,05	
	DISTR.F.CD(valor;gl num.; gl den.)		\rightarrow	Probabilitat F-Snedecor (cua dref	ta) $p(F_{1,24} \ge 4,26) = 0$,05	

Ompliu les cel·les , que són l'objectiu de la pràctica. Les cel·les contenen fórmules Excel que podeu consultar seleccionant-les.

Ompliu les cel·les , que són l'objectiu de la pràctica. Les cel·les contenen fórmules Excel que podeu consultar seleccionant-les.

SOLUCIÓ DE LA PRÀCTICA

Ompliu les cel·les _____, que són l'objectiu de la pràctica. Les cel·les _____ contenen fórmules Excel que podeu consultar seleccionant-les.

SOLUCIÓ DE LA PRÀCTICA 1

Ompliu les cel·les ____, que són l'objectiu de la pràctica. Les cel·les _____ contenen fórmules Excel que podeu consultar seleccionant-les.

SOLUCIÓ DE LA PRÀCTICA 1

PRÀCTICA 2

En les primeres sessions cal familiaritzar-se amb el programa MicroEconometría^{©®} i els seus resultats. Es tracta, també, d'aprendre a relacionar els conceptes teòrics amb les quantificacions i estimacions que proporciona aquest programa.

- 1. Instal·leu el programa.¹
- 2. A partir de la informació continguda a *BaseDatosMicroeconometría-Regresión*, utilitzeu les dades del full «PRODUCCIÓN»² per estimar el model: LPROD_i = $\beta_1 + \beta_2$ LCAP_i + β_3 LTRAB_i + u_i , que consisteix en la funció de producció Cobb-Douglas. S'hauran d'utilitzar també les opcions «Estadística descriptiva» i «Ajustes y residuos».
- Escriviu algebraicament el model de regressió lineal múltiple d'aquest exemple. Distingiune els elements: variable endògena, part sistemàtica (paràmetres, variables exògenes) i terme de pertorbació (propietats estadístiques). Quina expressió té la funció de regressió? Quina variància té la variable aleatòria LPROD? Per què?
- 4. Interpreteu els resultats de la taula «ESTADÍSTICA DESCRIPTIVA». Escriviu la fórmula algebraica dels estadístics següents per a la variable LPROD.
 - 4.1 Suma de quadrats
 - 4.2 Suma de quadrats corregida
 - 4.3 Variància
 - 4.4 Desviació estàndard
 - 4.5 Calculeu aquests estadístics a partir de les fórmules i funcions que incorpora el mateix Excel, comprovant que s'obtenen els mateixos resultats.
- 5. Escriviu els resultats del vector d'estimacions, $\hat{\beta}$, i de l'estimació de la seva matriu de variàncies i covariàncies, vâr $(\hat{\beta})$.
 - 5.1 Quin significat econòmic tenen $\hat{\beta}_2$ i $\hat{\beta}_3$ en aquest model?
 - 5.2 Quin efecte experimenta la producció si augmenta la dotació del factor treball un 10%?
 - 5.3 Quines dimensions tenen $\hat{\beta}$ i vâr $(\hat{\beta})$?
 - 5.4 Què representen els elements de la diagonal principal de vâr $(\hat{\beta})$?
- 6. Per a la primera observació de la mostra, Hullera Vasco-Leonesa, i = 1, escriviu els valors de y_1 , \hat{y}_1 i *e* (variable endògena, ajustament i residu). Quina relació hi ha entre aquestes tres variables?

^{1.} Per a qualsevol dubte sobre la instal·lació i el funcionament del programa, consulteu l'apartat «Programa Micro-Econometría».

^{2.} Vegeu una breu explicació de la base de dades «PRODUCCIÓN» en l'apartat «Bases de dades».

- 7. Com es calcula l'estadístic $\hat{\sigma}_{u}^{2} = \frac{e'e}{N-k}$? Quin valor té? On es troba si utilitzem la taula «ANÁ-LISIS DE LA VARIANZA»?
- 8. Calculeu l'estimador per interval del paràmetre β_3 utilitzant un nivell de significació del 5% i del 10%. Quins elements intervenen en el càlcul? Identifiqueu-los en la taula «ESTI-MACIÓN MCO». Comproveu-ne els resultats utilitzant les funcions pertinents de l'Excel.
- 9. Estimeu la funció de producció translog:

$$LPROD = \beta_1 + \beta_2 LCAP + \beta_3 LTRAB + \beta_4 \left(\frac{1}{2}LCAP^2\right) + \beta_5 \left(\frac{1}{2}LTRAB^2\right) + \beta_6 (LCAP LTRAB) + u$$

Obtingueu les expressions de les elasticitats de capital i treball. Quin valor tenen en el punt mitjà de la mostra?